正则化 (Regularization)

黎 浩然/ 5 11 月, 2023/ 机器学习/MACHINELEARNING, 研究生/POSTGRADUATE/ 0 comments

Cost Function of Logistic Regression

$$ \begin{equation}J_\theta=-{1\over m}\sum_{i=1}^m{(y^{(i)}lg(h_\theta(x^{(i)}))+(1-y^{(i)})lg(1-h_\theta(x^{(i)})))} + {\lambda \over 2m}\sum_{j=1}^n\theta_j^2\end{equation} $$

Gradient Descent after Regularization

if j == 0:

$$ \begin{equation}\theta_0 := \theta_0 – \alpha{1\over m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})\end{equation} $$

else:

$$ \begin{equation}\theta_j := \theta_j – \alpha{1\over m}[\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)} + \lambda\theta_j]\end{equation} $$

or written as:

$$ \begin{equation}\theta_j := \theta_j(1-\alpha{\lambda\over m}) – \alpha{1\over m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_j\end{equation} $$

使用上述公式同时更新$\theta_0,\theta_1,\cdots,\theta_n$

Share this Post

Leave a Comment

您的邮箱地址不会被公开。 必填项已用 * 标注

*
*